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ABSTRACT 

The concept of nanodosimetry is based on the assumption that initial damage to cells is related to 

the number of ionisations (the ionisation cluster size) directly produced by single particles 

within, or in the close vicinity of, short segments of DNA. The ionisation cluster size distribution 

and other nanodosimetric quantities, however, are not directly measurable in biological targets 

and our present knowledge is mostly based on numerical simulations of particle tracks in water, 

calculating track structure parameters for nanometric target volumes. The assessment of  

nanodosimetric quantities derived from particle-track calculations using different Monte Carlo 

codes plays therefore an important role for a more accurate evaluation of the initial damage to 

cells and, as a consequence, of the biological effectiveness of ionising radiation. The aim of this 

work is to assess the differences in the calculated nanodosimetric quantities obtained with 

Geant4-DNA as compared to those of an ad-hoc particle-track Monte Carlo code developed at 

PTB. The comparison of the two codes was done for incident electrons of energy in the range 

between 50 eV and 10 keV, for protons of energy between 300 keV and 10 MeV, and for alpha 

particles of energy between 1 MeV and 10 MeV. Good agreement was found for nanodosimetric 

characteristics of track structure calculated in the high energy range of each particle type. For 

lower energies, significant differences were observed, most notably in the estimates of the 

biological effectiveness The largest relative differences obtained were over 50 %, however 

generally the order of magnitude was between 10 % and 20 %. 
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1. INTRODUCTION 

Monte Carlo (MC) simulation became an established tool for radiation transport calculations 

over the last decades. Condensed history methods based on multiple scattering theories enable 

radiation transport MC codes, for instance, to compute the absorbed dose distribution in a 

macroscopic volume. MC techniques also proved successful in studying the microscopic track 

structure of ionising radiation, i.e. the spatial distribution of all interaction events of a primary 

particle and its secondary electrons (including delta electrons and all subsequent generations of 

electrons produced). Unlike condensed-history codes, in which many interactions linked to small 

changes of direction of momentum and energy (up to a few eV) are subsumed into an artificial 

event associated with a larger change in energy (typically keV) and direction, track structure 

codes simulate the transport of all particles step-by-step. Each single interaction is treated 

individually, where the average distance between loci of subsequent interactions is in the order 

of nanometres for a charged particle travelling in condensed matter.  

 

Track structure codes have been employed to evaluate the risk of ionising radiation on human 

health by relating track structure characteristics to the damage to the DNA molecule, which is 

considered to be the most radiosensitive target in cells (Nikjoo and Goodhead 1991, Goodhead 

2006, Nikjoo et al 2006, Schulte et al 2008). Interactions of ionising radiation within, or close to, 

the DNA molecule may result in damage in the form of DNA strand breaks (Bedford 1991, 

Goodhead et al 1993, Goodhead 2006, Garty et al 2010). Clusters of strand breaks can result in 

genomic instability, carcinogenesis, and cell death (Goodhead et al 1993, Goodhead 1994). The 

DNA molecule suffers the most severe damage from radiation characterized by a high linear 

energy transfer (LET) as found in space and aviation as well as in radiation therapy using any 

kind of particles. A high LET is an attribute of heavy ions, alpha particles and low energy 

protons, as well as of low energy electrons, which are produced in the slowing down process of 
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any radiation. With increasing LET, the number of energy deposition events per path length 

increases. This involves, among other processes, a higher number of ionisation events within 

small segments of DNA and, as a biological consequence, a high number of DNA strand breaks 

(Grosswendt 2005, Schulte et al 2008). Commonly, a double strand break (DSB) is defined as 

two strand breaks occurring on opposite DNA strands at a distance of up to 10 base pairs 

(Grosswendt 2002). Additional strand breaks within the same DNA segment increase the 

complexity of a DSB and, consequently, the repair becomes more error prone. Therefore, high-

LET radiation has a high probability to produce clustered DNA damage in the form of complex 

DSB, resulting in a high biological effectiveness.  

 

For nanometric targets, such as DNA segments of a few base pairs length, the concept of 

absorbed dose is unsuitable for a direct measure of the initial DNA damage by ionising radiation, 

as it is a mean value of the energy deposited per mass in a macroscopic volume. Over such a 

macroscopic volume energy deposition events within nanometric volumes occur stochastically, 

according to the track structure of the radiation. Therefore, initial DNA damage is more likely to 

correlate with parameters derived from the track structure at nanometre resolution as obtained, 

for instance, by simulations using track structure codes.  

 

Several track structure codes have been developed in the last years (Krämer and Kraft 1994, 

Grosswendt 2002, Valota et al 2003, Salvat et al 2006, Incerti et al 2010) to model the 

interactions of particles down to energies of few eV, for the purpose of studying the correlation 

between track structure and biological effects of radiation. Until the development of Geant4-

DNA, nanodosimetric parameters of track structure (NPTS) based on the probability distribution 

of ionisation cluster sizes and their relation to radiation biology have only been investigated 

using the track structure Monte Carlo code developed at PTB (further referred to as PTB MC 

code) specifically for nanodosimetric applications (Grosswendt 2002, Grosswendt and Pszona 
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2002). While the statistical uncertainty of nanodosimetric quantities has been investigated (Bug 

et al 2010), the availability of two independent MC codes now opens now the possibility to study 

the differences in nanodosimetric parameters as calculated by the two codes. In a MC simulation, 

differences in calculated quantities may originate, for instance, from the physical models used to 

describe the particle transport in the medium of interest, from the uncertainties in the 

parameterisation of the underlying experimental interaction cross sections, and from the particle 

transport algorithms. For a detailed discussion on a comparison of different MC codes the reader 

may refer to the work of Dingfelder et al (2008). The influence of different cross section models 

implemented in the same MC code on calculated nanodosimetric quantities was partly 

investigated by Gargioni and Grosswendt (2007), but has not yet been fully assessed.  

 

In this paper, we compared nanodosimetric parameters of track structure obtained using the 

Geant4-DNA and the PTB MC codes and systematically evaluated the effect of differences in 

the implementation of particle transport algorithms and physical models for the interaction cross 

sections of liquid water. Additionally, we used the simulation results obtained with the two codes 

to carry out a similar comparison for a nanodosimetric estimate of biological effectiveness. This 

estimate was derived using the model proposed by Garty et al (2006, Garty et al 2010) to predict 

the probability of producing a DSB in a DNA segment. 
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2. METHODS 

2.1 Nanodosimetric quantities  

2.1.1 Nanodosimetric parameters of track structure (NPTS) 

A particle with radiation quality Q (which is defined by the type of particle and its energy) 

produces a characteristic structure of interaction events (track structure) when slowed down in a 

medium. In nanodosimetry, the unique track structure of a specific radiation quality Q is 

characterised by the probability distribution P(ν |Q) of the ionisation cluster size ν, which is 

defined as the number of ionisations produced by a single particle track within a specified target 

volume (Grosswendt 2002, Grosswendt and Pszona 2002). In common practice, the target 

volume is assumed to be filled with and surrounded by liquid water (Nikjoo and Goodhead 1991, 

Grosswendt 2002, Schulte et al 2008). The probability distribution P(ν |Q) describes the 

probability that exactly ν ionisations are produced per primary particle of radiation quality Q. In 

general, this probability distribution is characteristic of the radiation quality Q. However it also 

depends on the material composition of the target volume and on the impact parameter of the 

primary particle with respect to the target volume.  

 

Different quantities derived from the ionisation cluster-size distribution can be used as 

nanodosimetric parameters of track structure. One such parameter is the mean ionisation cluster 

size M1(Q), given by the first moment of the probability distribution: 

 
( ) ( )∑

∞

=

=
0

1
ν

νν QPQM
 (1) 

This track structure parameter can be considered as the nanodosimetric equivalent of the mean 

lineal energy, widely used in microdosimetry (Grosswendt 2006).  

 

2.1.2 Nanodosimetric estimates of biological effectiveness 
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A correlation of NPTS with the probability of strand break formation in a DNA segment was 

suggested by Grosswendt (2005). He proposed that the probability to form a DSB should be 

proportional to the cumulative probability F2(Q) for a radiation of quality Q to produce at least 

two ionisations within the volume of a DNA segment, as described by the following equation 

 
( ) ( )∑

∞

=

=
2

2
ν

ν QPQF
  (2) 

 

Despite supportive evidence for this hypothesis (Grosswendt 2007, Rabus and Nettelbeck 2011), 

the suggested proportionality is not by itself evident. A more sophisticated combinatorial 

approach was proposed by Garty et al. (2006, Garty et al 2010) to predict the frequency 

distribution of DNA strand breaks from the known ionisation cluster size distribution P(ν|Q). 

The method is based on modelling the conditional probability P(nsb|ν) to obtain a cluster of 

single strand breaks (SB) of size nsb when the ionisation cluster size is ν. This model relies on the 

probability pc of one ionisation being converted into a SB (discussion about pc follows below). 

By convoluting the probability distribution of ionisation cluster sizes with the conditional 

probabilities of an ionisation cluster of size ν being converted into a SB cluster of size nsb, one 

obtains the probability distribution of strand breaks for the given radiation quality Q: 

 
( ) ( ) ( )∑

∞

=

=
0ν

νν QPnPQnP sbsb
 (3) 

In a similar manner, the conditional probability P(DSB|nsb) for a SB cluster of size nsb to lead to 

a double strand break (DSB) allows one to obtain the total probability for DSB formation: 

 
( ) ( ) ( ) ( ) ( )∑∑
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 (4) 

To derive the required conditional probabilities, this model (Garty et al 2006) is based on two 

assumptions. First, that the probability pc of converting a single ionisation to a strand break is 

independent of the cluster size and of the location of the ion within the volume of the DNA 
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segment. Second, that a double strand break will be produced whenever breaks are present in this 

DNA segment on both strands of the DNA backbone. In this way, the conditional probability 

P(nsb|ν) to obtain a SB cluster of size nsb for a specific ionisation cluster size ν is given by the 

binomial distribution B(nsb; ν, pc), while the conditional probability P(DSB|nsb) that nsb strand 

breaks will result in a DSB is given by  

 
1)5.0(1)( −−= sbn

sbnDSBP  (5) 

In consequence, the resulting conditional probability P(DSB|ν) for an ionisation cluster of size ν 

to result in a DSB is 

 ( ) ( )ννν 21211)( cc ppDSBP −−−+=  (6) 

Here, pc is the constant probability for an ionisation to be converted into a strand break. This is 

an adjustable model parameter that is dependent on many conditions, such as the biological 

endpoint under study, cell type, DNA status (which depends on the cell cycle), as well as the 

geometry (size, shape, material) used in the simulations to determine the probability distributions 

of ionisations P(ν|Q). By fitting the predicted DSB formation probability to the results of a 

plasmid DNA assay, Garty et al. (2010) found a value for pc of 11.7 %. However, for the 

purposes of comparing MC codes the precise value of pc is not important, as long as the same 

value is used for all calculations. 

 

The probability distribution of strand breaks, P(nsb|Q), as well as the probability of a radiation 

quality Q to cause a double strand break, P(DSB|Q) or  F2(Q), can be used as nanodosimetric 

estimates of biological effectiveness. In this work, we determined the effect of using different 

MC codes (different transport methods and different physical interaction cross sections) on the 

calculation of these parameters for different radiation qualities.  

 

2.2 Determination of nanodosimetric parameters 
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2.2.1 Track structure Monte Carlo simulation 

To calculate NPTS by Monte Carlo simulations, the particles track structure has to be calculated 

such that secondary electrons histories are followed step-by-step until their energy falls below a 

threshold of a few eV. Such capability is possible with the PTB Monte Carlo track structure code 

and with Geant4-DNA. The PTB MC code was specifically developed and is well established for 

nanodosimetry (Grosswendt and Pszona 2002, Schulte et al 2008, Bashkirov et al 2009, Garty et 

al 2010). Geant4 is the only open-source, general-purpose Monte Carlo code system and the 

recently released Geant4-DNA Very Low Energy physical interaction models provide a potential 

capability for nanodosimetry applications (Agostinelli et al 2003, Allison et al 2006, Chauvie et 

al 2007, Incerti et al 2010). Because the Geant4-DNA software package is under development to 

refine its functionality, a regression test was performed, comparing Geant4 releases 9.2.p01, 

9.2.p02 (including G4EMLOW 6.2) and 9.3 (including G4EMLOW 6.9) to check the 

consistency of the results deriving from the simulation through the evolution of the MC code. 

Results obtained by different versions of Geant4 in conjunction with different versions of low 

energy electromagnetic processes were compared and showed agreement, within the statistical 

uncertainties, for the calculated nanodosimetric parameters. 

Detailed information on track structure simulations and the physical interaction cross section 

models adopted in both MC codes is provided in the appendix. 

 

2.2.2 Geometrical set-up of the simulation study 

Nanodosimetric parameters of track structure were determined in targets equal in volume to a 

DNA segment of 10 base pairs length and a nucleosome, both modelled as water cylinders with 

nanometric dimensions. This simplified modelling of the DNA using cylindrical volumes is a 

common practice in nanodosimetric simulations (Grosswendt 2002, Nikjoo and Goodhead 

1991). Figure 1 illustrates the geometrical set-up of the MC simulations. The DNA segment was 

modelled as a water cylinder of 2.3 nm diameter and 3.4 nm height. This cylinder was set inside 
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another water cylinder with 6 nm diameter and 10 nm height, which is equivalent to the size of a 

nucleosome or to a volume within which hydroxyl radicals can reach the DNA by diffusion. 

Thus, this geometry is a simplified model for estimating the indirect effects of the ionising 

radiation on the DNA molecule (Nikjoo and Goodhead 1991, Grosswendt 2002). The axes of the 

DNA segment and nucleosome were aligned along the z-axis. The nucleosome model was set in 

the centre of the ‘world’ volume, which was modelled as a water cube of 150 nm edge length. 

The radiation field was simulated as a monoenergetic pencil beam, incident on the surface of the 

DNA segment at half the cylinders’ height, as illustrated in Figure 1. A pencil beam was chosen 

(rather than a broad beam) to provide an identical initial condition, such as the same potential 

path length through the target volume, for each incident particle. At least 105 primary particles 

were simulated per initial particle energy. Simulations were carried out for primary electrons 

with energies from 50 eV to 10 keV, for protons with energies from 300 keV to 10 MeV, and α-

particles with energies from 1 MeV to 10 MeV. These are the energy ranges that were available 

in both codes at the time this investigation was carried out (refer to Appendix for details of 

physical models of interaction used in the codes). 

 

Figure 1. Geometrical set-up of the Monte Carlo simulations. The DNA segment and the nucleosome were 

embedded in a water cube of 150 nm edge length. The particle beam was incident on the surfaces on both cylindrical 

targets and directed along the x-axis.  

 

 

2.2.3 Statistical uncertainty  
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We estimated the statistical uncertainty of the calculated nanodosimetric results in the following 

way: for each initial kinetic energy the relative frequency distribution of cluster size was used to 

calculate the corresponding cumulative probability distribution. These cumulative probabilities 

were then used as bin boundaries for binning sets of random numbers that were generated by a 

generator based on the AS183 algorithm (Wichmann and Hill 1982), which yields random 

numbers uniformly distributed between 0 and 1. For each cluster size distribution, 100 

independent sets of at least 105 random numbers were used, such as to mimic 100 repetitions of 

our Monte Carlo simulations. For each set of random numbers, we determined the relative 

frequency distribution of ionisation cluster size P(ν|Q), the mean ionisation cluster size M1(Q), 

the probability F2(Q) for ionisation cluster sizes of at least two, the relative frequency 

distribution of SB cluster size P(nsb|Q) and the probability P(DSB|Q) for double strand breaks. 

For each of these quantities, the standard deviation ui over the 100 repetitions was calculated and 

used as the statistical uncertainty estimate.  

 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Electrons 

Figure 2 shows as an example the probability distribution of ionisation cluster sizes P(ν|Q) 

produced in both target volumes for incident electrons of 200 eV.  The P(ν|Q) obtained in the 

DNA segment had a maximum at a cluster size of 1 and decreased with increasing cluster size. 

The maximum probability obtained in the nucleosome by the PTB and Geant4 simulations 

occurred at a cluster size of 6 and 8, respectively. 

The probability for small cluster sizes (up to 5 for 200 eV electrons) was calculated by all 

simulations in good agreement. However, with the PTB simulation, a smaller number of large 
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cluster sizes were obtained than for the Geant4 simulations. The use of the two different physical 

models for elastic scattering available in Geant4-DNA resulted in a higher probability of large 

cluster sizes when the Screened Rutherford cross sections were used in comparison to those from 

Champions model (Champion 2003), which leads to significant discrepancies in the case of the 

DNA segment.  

The variations between the results obtained by PTB and Geant4 simulations should be due to the 

different physical models for electron elastic and inelastic cross sections used in the codes. This 

conclusion is supported by the variation of the results obtained by Geant4, comparing both 

elastic scattering models. 
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Figure 2. Probability distribution of ionisation cluster size P(v|Q) in the DNA segment (a) and the nucleosome (b) 

obtained for incident electrons of 200 eV, calculated by means of the PTB and Geant4 MC codes by using the 

Screened Rutherford (G4SR) and the Champion model (G4Ch) for elastic scattering. Statistical error bars are not 

shown; for probabilities of approximately 10-5 and higher, the uncertainties are within the symbols. Below this value 

P(v|Q) has relative statistical uncertainties of up to 100% (for the lowest probabilities). 
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Figure 3 shows the mean ionisation cluster size determined from P(ν|Q) for incident electron 

energies from 50 eV to 10 keV. The dependence of the mean ionisation cluster size on electron 

energy was described comprehensively by Bug et al (2010). Good agreement of all simulations 

was obtained for energies above 700 eV in the DNA segment and above 1 keV in the 

nucleosome. However, due to the variation of P(ν|Q) for large cluster sizes in the different 

simulations, smaller mean cluster sizes were obtained for lower energies with the PTB code, 

showing a relative difference of as much as 87 % at electron energies below 100 eV.   

Furthermore, the Geant4 simulation using the Screened Rutherford elastic scattering model 

calculated larger mean cluster sizes for energies between 150 eV and 500 eV in the DNA 

segment and between 300 eV and 700 eV in the nucleosome. This is plausible if one considers 

the range R0.95, that is the radius of a sphere containing 95 % of the ionisations produced by an 

electron until its complete slow down. In the afore mentioned energy ranges the cross sections 

for elastic scattering are large and the range of the electrons just exceeds the diameter of the 

respective target (R0.95(150 eV) ≈ 6 nm, R0.95(300 eV) ≈ 10 nm (Grosswendt 2002)). This leads to 

a higher probability that electrons are scattered out of the volume and deposit their energy in the 

surrounding medium. Our results show that the Screened Rutherford model allowed the particles 

to undergo a larger number of ionisations inside the targets than the Champion model. This is in 

direct relation to the difference in cross section for both models: the differential elastic scattering 

cross section for forward scattering is much larger in the Champion model than in the Screened 

Rutherford model and decreases dramatically for larger scattering angles (Champion 2003, 

Brenner and Zaider 1983). In addition, for electron energies between 150 eV and 700 eV, the 

total elastic scattering cross section for the Screened Rutherford model is up to 10 times larger 

than that of the Champion model (Champion 2003). These differences lead to a higher 

probability of electrons reaching the surrounding medium of the respective target in the 

Champion model, resulting in a lower number of ionisations within the target. 
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Figure 3. Mean ionisation cluster size M1(Q)  as a function of incident electron energy T obtained in the DNA 

segment (DNA) and the nucleosome (Nuc) by the PTB simulation and Geant4, using the Screened Rutherford 

(G4SR) and the Champion model (G4Ch) for elastic scattering. 

 

To investigate the influence of different Monte Carlo simulation codes on NPTS that are 

supposed to be related to biological effects (Grosswendt 2007), we calculated the probability 

F2(Q) that at least two ionisations are produced within a DNA segment according to Eq. (2). In 

good agreement to the mean cluster size, F2(Q) peaks at a maximum for electrons of 150 eV 

(Figure 4). Above 300 eV, we found good agreement between the results obtained from the 

different Monte Carlo simulations. A large difference, however, is observed for energies below 

150 eV, where the value of F2(Q) determined from the PTB simulation is much smaller than that 

calculated by Geant4-DNA. This originates from the smaller probability of large cluster sizes in 

the DNA segment and from differences in P(ν|Q) already evident for cluster sizes of 3 or 4.  
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Figure 4.Cumulative probability, F2(Q), for electrons to produce at least two ionisations within the DNA segment, 

as a function of kinetic energy T, for PTB and Geant4 Monte Carlo simulations using the Screened Rutherford 

(G4SR) and the Champion model (G4Ch) for elastic scattering. 

 

Figure 5 shows a comparison of the ionisation cluster size distributions, P(ν|Q), and the 

corresponding probability distributions for DNA strand breaks cluster size, P(nsb|Q), calculated 

using Eq (3); briefly, this combines P(nsb|ν) with P(ν|Q) in a binomial distribution with the 

probability pc = 11.7 % to determine P(nsb|Q). Discrepancies between the ionisation cluster size 

distributions that were present essentially for large ionisation cluster sizes have little impact on 

the SB distributions, where both codes provide very similar results. This implies that the 

biological damage predicted by the two codes will be very similar. The reason for this is that 

while the SB distribution depends strongly on the probabilities of producing large ionisation 

cluster sizes, here these probabilities take only low values of around 10-4 or less and so have only 

a minimal impact on P(nsb|Q). 
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Figure 5. Probability distribution P(ν|Q) of ionisation cluster size, ν, in the DNA segment and probability 

distribution, P(nsb|Q),  for DNA strand break cluster size, nsb, for 2 keV  (a) and 200 eV (b) electrons, calculated by 

means of the PTB and Geant4-DNA codes using the Screened Rutherford (G4SR) and the Champion model (G4Ch) 

for elastic scattering. 

 

The probability of 200 eV electrons to produce a double strand break was (1.465 ± 0.003) % for 

Geant4-DNA (using Champion model) and (1.456 ± 0.003) % for the PTB code, where these 

uncertainties are statistical in origin. The small difference between the two codes is due to the 

slightly smaller values of the probabilities to produce two or more strand breaks, which occur for 

the PTB code.  

The energy dependence of the probability to form a DSB is in agreement (within 30 %) for the 

two codes for electron energies above 200 eV (Figure 6). For lower energies, the PTB code 

predicts DSB production with consistently lower probability than Geant4-DNA. This indicates 
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that the two codes will predict similar amounts of biological damage for electron energies of 200 

eV and above. Below this energy, Geant4-DNA will predict a higher amount of biological 

damage. This is in agreement with the values of both the mean ionisation cluster size and F2(Q).  
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Figure 6. Probability of producing a DSB in the DNA segment as a function of kinetic energy, T, calculated by 

means of the PTB and Geant4 MC codes using the Screened Rutherford (G4SR) and the Champion model (G4Ch) 

for elastic scattering.  

 

3.2 Protons and alpha particles 

The probability distribution of ionisation cluster sizes P(ν|Q) produced in both target volumes is 

shown in Figure 7 for incident protons of 300 keV and incident alpha particles of 1 MeV, 

exemplarily. The P(ν|Q) obtained in the DNA segment for protons has a maximum at a cluster 

size of 2 and decreases with increasing cluster size. For alpha particles, the most frequent cluster 

size is 8 when simulations are performed with the PTB code, and 12 when using Geant4-DNA. 

The maximum probability obtained in the nucleosome for protons by the PTB and Geant4 

simulations occurred at a cluster size of 6 and 8, respectively. For alpha particles a cluster size of 

26 and 44 in the nucleosome had the maximum probability in the PTB and Geant4 simulations, 

respectively. All curves reach their maximum and then decrease with increasing cluster size. For 



P. Lazarakis et al.: Comparison of nanodosimetric parameters of track structure calculated by Geant4-DNA and PTB …  

18 / 34 

incident protons, the probability for very small cluster sizes (of around 2 or lower) was 

calculated by all simulations, for all energies, in good agreement. However the probabilities for 

producing large cluster sizes with the PTB simulations are systematically smaller than those of 

Geant4-DNA. These differences are significantly larger than the statistical uncertainties, which 

are not indicated in the figure as in most cases the error bars are within the symbols. For incident 

alpha particles, the maximum of the PTB curve is consistently higher than that of the Geant4-

DNA curve, which predicts significantly higher probability for larger cluster sizes than the PTB 

code.  
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Figure 7. Probability distribution of ionisation cluster size for protons in the DNA segment (a) and the nucleosome 

(b) obtained for incident protons of 300 keV and incident alpha particles of 1 MeV (c) and (d), calculated by means 

of the PTB and Geant4 MC codes using the Screened Rutherford (G4SR) and the Champion model (G4Ch) for 

elastic scattering of the secondary electrons produced. Statistical error bars are not shown; for probabilities of 
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approximately 10-4 and higher, the uncertainties are within the symbols. Below this value P(ν|Q) has relative 

statistical uncertainties of up to 100% (for the lowest probabilities). 

 

When comparing the different models used for elastic scattering of secondary electrons, namely 

the Screened Rutherford and Champion models, minor differences can be seen for very large 

ionisation cluster sizes (Figure 7). The reason for this is that the majority of secondary electrons 

produced by protons or alpha particles along their track are in an energy range where the 

electrons undergo strong scattering. Therefore only electrons produced in the vicinity of a 

nanometric volume may contribute to the number of ionisations produced therein. Figure 8 

shows that for incident protons and alpha particles ionisations are mostly produced by the 

primary particle, with delta and other secondary electrons producing around 25 - 30% of the total 

number of ionisations in the DNA volume. The relatively small contribution of secondary 

electrons to the total number of ionisations implies that the large discrepancies between the PTB 

and Geant4 codes, as seen in Figure 7, cannot be explained by differences in electron interaction 

cross sections. 
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Figure 8. Fraction of ionisations in the DNA segment due to interactions of the primary particle, as a function of 

LET. Obtained for incident protons and alpha particles, calculated by means of Geant4-DNA using the Champion 

model for elastic scattering. LET values used here are the unrestricted LET obtained from NIST databases ASTAR 

and PSTAR (Berger et al 2005) 
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The discrepancies between the results obtained by PTB and Geant4 simulations may rather be 

due to the different physical models for ion cross sections used in the codes (refer to appendix). 

This is also supported by Figure 9 from which it can be deduced that the differences in the mean 

cluster size for protons and alpha particles between the two codes is too large to be due entirely, 

or even primarily, to differences in electron models. 

 

Figure 9 shows the mean ionisation cluster size determined from P(ν|Q) for incident proton 

energies from 0.3 MeV to 10 MeV and incident alpha particles from 1 MeV to 10 MeV. For 

protons, the best agreement of all simulations is obtained for energies of 2 MeV and above in 

both the DNA and nucleosome volumes. However, due to the variation of P(ν|Q) for large 

cluster sizes in the different simulations (as seen in Figure 7), smaller mean cluster sizes are 

obtained for lower energies with the PTB code, showing a relative difference of as much as 31 % 

at proton energies below 1 MeV.  We should note here that as the energy of the primary proton 

beam is decreased, the LET of the primary particles increases, so that the largest differences 

between the two codes are seen in the highest LET range. As the LET is increased, the number 

of secondary electrons produced will also increase. 

For incident alpha particles, we found good agreement between the Geant4-DNA and PTB codes 

for energies of around 3 MeV and above. Below this limit, the PTB code produces consistently 

lower mean ionisation cluster sizes than those obtained by Geant4-DNA with differences of as 

much as 60% between the two codes. This is consistent with the larger ionisation cluster sizes 

scored by Geant4-DNA as observed in the cluster size probability distributions in Figure 7. The 

variations between the results obtained by PTB and Geant4-DNA simulations may be due to the 

different physical models for alpha particle interaction cross sections used in both codes. As with 

the proton results, this is demonstrated in part in Figure 9. In fact, changing the elastic scattering 

model for electrons had only a small effect on the simulation, whereas the different models for 
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alpha particle interactions applied in the MC codes produces a much larger difference between 

the mean ionisation cluster sizes.  
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Figure 9. Mean cluster size, M1(Q), as a function of reduced kinetic energy for incident and alpha particles (a) and 

protons (b), obtained in the DNA segment and the nucleosome by means of Geant4-DNA and PTB MC code.  

 

The largest differences between Geant4-DNA and PTB codes are seen in the lower part of the 

energy ranges tested for the particles. This is where the interaction cross sections, particularly for 

ionisation and charge change processes, are more complex and therefore larger differences 

between existing theoretical and semi empirical models are to be expected. 
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Figure 10. Cumulative probability to produce at least two ionisations within the DNA segment, F2(Q), as a function 

of reduced kinetic energy for alpha particles (a) and protons (b) calculated by means of PTB and Geant4-DNA MC 

codes. 

 

In good agreement with the mean cluster size, F2(Q) is highest for the lowest primary particle 

energies available in the PTB code (Figure 10). It decreases for the entirety of the tested energy 

range. Again, we can see that both Geant4-DNA models for elastic scattering produce very 

similar results. For protons, consistently smaller F2(Q) values are seen for the PTB code 

throughout the whole energy range. This results from the smaller probability, P(ν|Q), of clusters 

of size 2 or greater obtained by the PTB code compared to Geant4-DNA, as seen in Figure 8. For 

alpha particles, the F2(Q) values obtained by means of the PTB code match well to the Geant4-

DNA data, with the results from the PTB code tending to be slightly lower for energies between 

2 MeV and 5 MeV. Initially this may not be expected, considering the differences in ionisation 
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cluster size probability distributions seen in Figure 7. However, F2(Q) being a cumulative 

quantity, it is reasonable that such behaviour should be observed. For all alpha particle energies, 

the PTB code gives a higher maximum in the probability distribution P(ν|Q), which would 

significantly increase the value of F2(Q), whereas Geant4-DNA produces larger cluster sizes 

which increase the value of F2(Q) as well. From this comparison of the F2(Q) values one may 

expect, for a given radiation quality, that the biological damage predicted by the two codes 

would therefore be very similar. 

 

It can be seen from Figure 11 that even though there are significant differences between the 

ionisation probability distributions, these differences have a relatively minor, though still 

significant, effect on the SB distributions. This implies that the two codes will predict only 

slightly different amounts of biological damage, despite the presence of particular differences 

observed between the nanodosimetric track structure quantities obtained by the two codes. This 

is analogous to the results for primary electrons, where the large differences observed for large 

ionisation cluster sizes had only a small impact on the SB distribution. For protons, those large 

ionisation cluster size probabilities are very low (around 10-4 and lower), and therefore have only 

a small effect on the strand break formation. For alpha particles there is a greater difference 

between the ionisation cluster size distributions and this is translated in to a larger difference in 

the SB distributions. This is to be expected as there are large differences between the ionisation 

cluster size distributions even for cluster sizes of high probability (i.e. exceeding 1 %). 
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Figure 11. Probability distribution of ionisation cluster size and DNA strand breaks in the DNA segment for 300 

keV protons (a) and 1 MeV alpha particles (b), calculated by means of the PTB and Geant4-DNA  MC codes. 

 

As a further investigation to characterise the two codes for nanodosimetry applications, we 

compared the probability of producing a DSB as described in Section 2.1. Generally, the 

probability of DSB formation is seen to decrease with increasing primary particle energy (Figure 

12). The reason for this is that, in the energy ranges investigated here, the LET of the two 

particle types, and therefore the number of ionisations in the DNA segment, decreases with 

increasing energy. The relative differences seen here are around 40 % for low proton energies 

(P(DSB|Q) around 3.1 % for Geant4 and 2.2 % for the PTB code). For alpha particles the 

Geant4-DNA data consistently predicted a higher probability (between 10 % and 70 % relative 

increases) of producing a DSB than the PTB data. Consequently, the amount of biological 

damage predicted by Geant4-DNA will be significantly greater than that predicted by the PTB 
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code, particularly for lower energies of both particles. This is in contrast with the F2(Q) values 

that were generally equal for both codes (Figure 10). 

The reason for this is that at least two strand breaks must occur for a DSB to be produced, so that 

the contribution of larger ionisation cluster sizes is increased compared to smaller ones when 

determining P(DSB|Q) as described in equations 4 and 5. For protons the differences between the 

codes is greater for larger clusters which increases the differences in the number of SB (as seen 

in Figure 11) and, subsequently, the differences between the DSB probability predictions of the 

two codes. For alpha particles, instead, the probability of producing a very small ionisation 

cluster size compares to the probability of producing a very large cluster size. However, a very 

large ionisation cluster size is more likely to result in complex damage to the DNA molecule 

(complex DSB) than a very small number of ionisations. While this will have a significant effect 

on the calculation of P(DSB|Q), it will not significantly influence the value of F2(Q). 

This means that the DSB probability will be particularly sensitive to differences in ionisation 

cluster size distributions, implying that P(DSB|Q) is highly dependent on the track structure of 

the radiation. 
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Figure 12. Probability of producing a DSB for alpha particles (a) and protons (b), calculated by means of the PTB 

and Geant4 MC codes using the Champion model for elastic scattering. 

 

4. CONCLUSION 

The aim of this paper was to quantitatively compare several nanodosimetric parameters 

calculated using Geant4-DNA and the PTB Monte Carlo track structure code in order to assess 

the effect of using different transport methods and different physical interaction cross sections on 

these quantities. We simulated the transport of pencil beams of monoenergetic particles 

(electrons, protons and alpha particles) inside nanometric-sized volumes equivalent to a DNA 

segment and a nucleosome. 

 

We found that there is generally good agreement between Geant4-DNA and the PTB MC code 

regarding NPTS, particularly in the higher energy range. The discrepancies that we observed (up 
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to 25 % for track structure parameters) in the lower energy range are presumably due to the 

different physical interaction cross sections used in the two codes. The largest differences are 

obtained at energies where the LET is higher and more interactions take place.  

For electrons, the difference between the two codes is largest below 300 eV, with Geant4-DNA 

systematically showing a higher number of ionisations produced in the sensitive volume. For 

light ions, the results show that a higher number of ionisations in the sensitive volumes is 

obtained when using Geant4-DNA, particularly for low energies, which in this case corresponds 

to higher LET values. These discrepancies are most likely due to differences in the impact 

ionisation cross sections of the primary particles, since the number of ionisations produced by 

secondary electrons is small compared to those produced by the primary protons or alpha 

particles. Therefore the influence of different electron transport models used in the codes is of 

relatively minor importance for ion track structure parameters.  

 

Three different nanodosimetric estimators for biological effectiveness have been calculated from 

the simulated ionisation cluster size distributions: Cumulative probability F2(Q) for ionisation 

cluster sizes larger than 1, probability distributions P(nsb|Q) for strand break cluster size nsb and 

the overall probability for DSB induction, P(DSB|Q). For electrons, the nanodosimetric 

estimates of biological effectiveness determined with the two codes are in good agreement for 

energies above 200 eV and show differences up to a factor of 2.5 below that energy. Proton data 

show significant differences of more than 40 % in DSB probabilities over the entire energy range 

tested. Alpha particle data also show large differences, of over 60 % in P(DSB|Q). For both ion 

types, Geant4-DNA gives higher probability of producing a DSB than the PTB code across the 

entire energy range. A similar trend is seen for the cumulative probability for ionisation clusters 

of size two or more, F2(Q). However, here the results of the two codes show only minor 

discrepancies for alpha particles whereas the relative difference amounts to up to 5% for protons.  
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While the discrepancies found in this work are still within the uncertainty limits usually 

considered in radiation protection, significant improvement is required for applications of 

computational nanodosimetry in radiotherapy in terms of chosen MC code and for establishing 

the correlation of nanodosimetric characteristics of track structure and in vivo biological cell 

killing.  
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Appendix 

Details on the track structure Monte Carlo simulations 

Both the PTB MC code and Geant4-DNA use the same general procedure for track structure 

simulation: single interactions are directly random sampled according to the relative magnitude 

of the respective total physical interaction cross sections as mentioned in the introduction. Those 

are ionisation, excitation and elastic scattering for electrons, and ionisation, excitation and charge 

exchange for protons and alpha particles (including interaction cross sections for H+, H0, He0, 

He+, He2+). When the energy of the primary particle falls below a given lower limit, the particle 

is assumed to locally deposit all its remaining energy at the site where the last interaction 

occurred. Its secondary electrons are subsequently transported in a similar manner. The lower 

energy limit for electrons in Geant4-DNA is 8.23 eV for the excitation and elastic scattering 

models (Incerti et al 2010), while the threshold of ionisation is fixed at 12.61 eV (Chauvie et al 

2007). In the PTB code, the cut off limit for the lower electron energy is set to 10.79 eV 

(Grosswendt 2005). Protons and alpha particles can be followed down to a lower energy limit of 

100 eV in Geant4, while the PTB code does rely on the accuracy of its incorporated physical 

models down to 300 keV for protons or 1 MeV for alpha particles.   

 

The accuracy of the Monte Carlo simulation depends strongly on the physical models for 

electromagnetic interaction cross sections, applied to describe the particle interactions in the 

medium of interest. Commonly, in Monte Carlo simulations, interaction cross sections for liquid 

water are used as an approximation for biological material. In contrary to low-density material in 

the gas phase, where interaction cross sections can be experimentally determined with sufficient 

accuracy, those in liquid water cannot be measured directly, due to the inability of the incoming 

particle to experience only a single interaction in the medium. While a tracking of high energetic 

particles can still be achieved with sufficient accuracy also for condensed material by using the 
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Bethe-Born theory, the interactions of low energetic particles with the target molecules are more 

complex.  

 

For electrons, various theoretical models exist (Dingfelder et al. 1998, Emfietzoglou and Nikjoo 

2005, Champion 2003, Rudd 1991, Kutcher and Green 1976), however, they show differences 

already for the total, inelastic and elastic cross sections of electrons below 1 keV. Most of the 

authors derived their inelastic cross sections on the basis of optical measurements on liquid water 

by Heller et al (1974). These experimental data allow only the direct calculation of the optical 

oscillator strength and therefore, of interactions at the dipole limit. The Sendai group (Hayashi et 

al. 2000), on the other hand, derived a large range of the generalized oscillator strength from x-

ray scattering experiments, which enable a calculation of the inelastic cross sections with greater 

accuracy (Emfietzoglou and Nikjoo 2005). Other groups use quantum mechanical calculations to 

determine the interaction cross sections (Rudd 1991, Champion 2003.). A detailed comparison of 

the existing interaction cross sections for electrons can be found in (Champion 2003, 

Emfietzoglou et al. 2009). Regarding the treatment of inelastic scattering in the Monte Carlo 

codes used in this study, the model developed by Emfietzoglou et al (Emfietzoglou and Nikjoo 

2005) was applied in Geant4-DNA. The PTB code, on the other hand, is based on the energy loss 

functions derived by Dingfelder et al. (1998) from measured data of Grosswendt and Waibel 

(1978) and used the semi-empirical model of Green and Sawada (1972) for excitation as 

parameterized by Kutcher and Green (1976). Elastic scattering, which is commonly neglected for 

high particle energies, is the dominant interaction in the low energy regime for electrons. Both 

codes use modified screened-Rutherford models to calculate the total elastic cross section as well 

as the scattering angle for electron energies above 200 eV and the semi-empirical model of 

Brenner and Zaider (1983) below. Geant4-DNA offers an alternative analytical model developed 

by Champion (Champion 2003), which takes also polarization and exchange effects in the low 

energy domain into account. 
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For protons and alpha particles the inelastic cross sections contained in Geant4-DNA are 

calculated by the Bethe-Born theory for energies greater than 500 keV. Below, a semi-empirical 

model is used to treat ionisations (Dingfelder et al. 2000). Excitations are calculated using the 

model developed by Miller and Green (1973) for both, Geant4-DNA and the PTB code. The total 

inelastic ion cross sections for ions applied in the PTB code are based on the analytical model 

developed by Rudd et al. (1985) and the differential ionisation cross sections are obtained from 

the model of Hansen and Kocbach (ICRU 1996).  
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